Historical Analysis of Legal Opinions with a Sparse Mixed-Effects Latent Variable Model
نویسندگان
چکیده
We propose a latent variable model to enhance historical analysis of large corpora. This work extends prior work in topic modelling by incorporating metadata, and the interactions between the components in metadata, in a general way. To test this, we collect a corpus of slavery-related United States property law judgements sampled from the years 1730 to 1866. We study the language use in these legal cases, with a special focus on shifts in opinions on controversial topics across different regions. Because this is a longitudinal data set, we are also interested in understanding how these opinions change over the course of decades. We show that the joint learning scheme of our sparse mixed-effects model improves on other state-of-the-art generative and discriminative models on the region and time period identification tasks. Experiments show that our sparse mixed-effects model is more accurate quantitatively and qualitatively interesting, and that these improvements are robust across different parameter settings.
منابع مشابه
Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملGeneralized Linear Latent Variable Models for time dependent data
Latent variable models are a fundamental tool for the analysis of multivariate data. The importance of such models is due to the crucial role that latent variables play in many fields, e.g. psychological and educational, socioeconomic, biometric, where often constructs are not directly observable. In these contexts, the different nature of the observable variables often causes theoretical and p...
متن کاملمدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری
Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis. One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...
متن کاملکاربرد مدل شبکه عصبی مصنوعی در پیشبینی پاسخهای آمیخته بیماری قلبی
Background: In epidemiological and medical studies, sometimes researchers are faced for prediction of two response variables (simultaneously) based on a number of independent variables. When the response variable is mixed, according to established limits and absence of assumption, the classical statistical methods are not enough efficient for classification and prediction goals. The p...
متن کاملGender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model
Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012